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Purpose. The goals of the present study were to apply a generalized regression model and support vector
machine (SVM) models with Shape Signatures descriptors, to the domain of blood–brain barrier (BBB)
modeling.
Materials and Methods. The Shape Signatures method is a novel computational tool that was used to
generate molecular descriptors utilized with the SVM classification technique with various BBB datasets.
For comparison purposes we have created a generalized linear regression model with eight MOE
descriptors and these same descriptors were also used to create SVM models.
Results. The generalized regression model was tested on 100 molecules not in the model and resulted in a
correlation r2=0.65. SVM models with MOE descriptors were superior to regression models, while Shape
Signatures SVM models were comparable or better than those with MOE descriptors. The best 2D shape
signature models had 10-fold cross validation prediction accuracy between 80–83% and leave-20%-out
testing prediction accuracy between 80–82% as well as correctly predicting 84% of BBB+ compounds (n=
95) in an external database of drugs.
Conclusions. Our data indicate that Shape Signatures descriptors can be used with SVM and these
models may have utility for predicting blood–brain barrier permeation in drug discovery.

KEY WORDS: blood–brain barrier; principal component analysis; regression; shape signatures; support
vector machine.

INTRODUCTION

Over the past decade we have witnessed a growing
number of studies that have used computational methods to
predict absorption, distribution, metabolism and excretion
(ADME) properties (1–3). One of the key aspects of ADME

profiling is to determine whether a molecule is likely to cross
the blood–brain barrier (BBB) which may be desired or not
depending on the therapeutic target (4) and traversing it is a
major obstacle in drug discovery (5). The BBB is a complex
physiological barrier that contains endothelial cells and helps
in maintaining brain homeostasis. The BBB also expresses
numerous efflux transporters such as P-glycoprotein, (P-gp)
(6), multidrug resistance proteins (MRPs) as well as uptake
transporters such as the glucose transporter and amino-acid
transporters that can also influence whether a drug is
absorbed in the brain and central nervous system (CNS).
Experimentally testing libraries of compounds for BBB
permeation very early on in drug development is essential
but is very time consuming and expensive. Hence the
development of in silico models of BBB penetration has
gained considerable interest since the mid 1990s (7). Compu-
tational modeling of BBB data is an area of research which
has been extensively studied with many techniques. These
include the very simplest using a small number of interpret-
able physicochemical descriptors such as calculated logP and
polar surface area, to those using large numbers of descrip-
tors and statistical methods including linear regression
techniques, neural networks and higher level classification
models such as support vector machine (SVM) or other
sophisticated machine learning approaches (Supplemental
Table I). Several reviews have summarized the state of the
art over the years for both in vitro (4) and in silico approaches
to the BBB, including much of the earlier work (1,8,9). Most
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of the datasets used to date are primarily either those from
rat or mouse in vivo studies with logBB data or using large
datasets of drugs or drug-like molecules that are known to be
active in the CNS (BBB+) or not active in the CNS (BBB−)
of animals or humans. This binary data is also widely used to
create classification models. Notwithstanding the fact that
much of the BBB data have been accumulated over the years
into slightly larger databases (Supplemental Table I) with
subsequent mixing of data types, there have been some
impressive attempts at model creation and testing (8,9). Our
analysis of 32 of these studies, which is comprehensive to
date, suggests that 19 of them utilize an external test set,
while most perform some form of internal validation (such as
leave ‘n’ out, or leave one out, Supplemental Table I).

The majority of BBB models include some descriptors
relating to hydrogen bonding, lipophilicity, molecular size,
molecular charge, shape and flexibility and in some cases
these have been related as simple rules (8,10). The effect of
molecular shape has been rarely assessed with different
conclusions (11–14). A new approach called Shape Signatures
has recently been proposed that utilizes molecular shape-
dependent signatures as the basis for molecular recognition
(15). The Shape Signatures method employs a customized
ray-tracing algorithm to explore the volume enclosed by the
surface of a molecule, then uses the output to construct
compact histograms (‘Shape Signatures’) that encode for
molecular shape, polarity, and other biorelevant properties
(Fig. 1). The method has been successfully used for a number
of drug discovery programs for database similarity searching
(15–19) and has several advantages over other approaches
including being alignment independent and enabling rapid 3D
searching. The goals of the present study were to apply the
Shape Signatures approach to the domain of BBB modeling
using SVM and compare it to regression models using
different test sets and, additionally, to validate the models
with a database of FDA approved drugs.

MATERIALS AND METHODS

Data Compilation

The quality of computational models is directly influ-
enced by the quality of the datasets. However, compiling
diverse datasets with known experimental logBB values is
complex due to different experimental conditions and mea-
surements. Even more difficult is to derive a boundary
condition to classify BBB+ and BBB− based on logBB
values. Initially we have used the published datasets with
our methods (20–25) to either create regression or classifica-
tion models. We have also compiled meta-databases from this
published literature (20–25). The first database was assembled
using chemicals with measured values of logBB (20–22,24,25)
carefully chosen from these multiple sources (datasets tabulat-
ed and summarized in Table I). For each of these datasets, the
structures with experimental logBB ≥0 were labeled as BBB+
and those with logBB <0 as BBB−. In addition, since the
original datasets contained several identical molecules, it was
decided to retain a single copy of a compound in the process of
building new databases for regression and classification
analysis from different sources. The data for the same
compound from different sources were generally comparable.

The second database included a single dataset compiled
by Li et al. (23). These authors assigned molecules with
logBB ≥−1 to the class of BBB+ compounds and those with
logBB <−1 to BBB−, and for each molecule its class attribute
was reported in a binary format (either BBB+ or BBB−). The
final database was used for making predictions with the

Fig. 1. 1D and 2D Shape Signatures of fluoxetine (BBB+). a
Chemical structure. b 1D (shape only) signature histogram. c 2D
(shape and polarity) signature plot.
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models and was assembled from a database of the FDA
approved drugs derived from the Clinician’s Pocket Drug
Reference (26) (SCUT database) that has been used for
several pharmacophore database searching projects (27,28).
All of the above databases have been provided as supple-
mental files.

Molecular Descriptors

The chemical composition of the lipid bilayer imposes
certain characteristic features among molecules that have to
penetrate through these membranes. Several published
models include a variety of descriptors ranging from those
that account for hydrophobicity to hydrophilicity, volume and
mass (8). No single molecular descriptor has been solely
shown to reliably influence the model for drug transport
across the BBB. Therefore in this study, we have evaluated
the performance of a number of molecular descriptors on
their ability to be used to predict logBB values and further to
classify the compounds into BBB+ and BBB− based on these
values. We have chosen to use a set of molecular descriptors
for a simple linear regression model that aims at predicting
the logBB values. For the regression model, eight indepen-
dent molecular descriptors namely logP, TPSA, logS, mass,
volume, number of rotatable bonds, number of oxygen atoms,
and number of nitrogen atoms were chosen. The values for
the molecular descriptors were calculated for all the com-
pounds in the three databases using the Molecular Operating
Environment (MOE, Chemical Computing Group, Montreal,
Canada) quantitative structure activity relationship (QSAR)
and modeling program. In addition we have used a shape
based descriptor method called “Shape Signatures” for an
SVM based classification model for the BBB+ and BBB− set.
The performance of both these sets has been validated using
published datasets compiled from literature.

Regression Model

A simple linear regression model was developed using
the Xu-training dataset (21) that consisted of 78 unique
chemicals with continuous logBB data. The regression
analysis was performed using routines from the Statistical
Toolbox of MATLAB (Version 6). The model was validated
using the Kitchen-100 dataset (25) (Table I) that contained
100 unique chemical compounds with continuous logBB data.
Further, the regression model was used to predict the logBB
values for other published datasets listed in Table I.

Shape Signatures Method

The Shape Signatures method relies on a customized ray-
tracing algorithm (15), which explores the volume enclosed
by the solvent accessible surface of a molecule. During the
first step of the algorithm, the three-dimensional structure of
a single lowest energy conformer of the molecule is generated
by CORINA (Molecular Networks GmbH, Nägelsbachstr. 25,
91052 Erlangen, Germany. http://www.mol-net.de) and partial
charges for each atom are assigned according to the
Gasteiger–Marsili scheme (29). The second stage consists of
constructing a solvent accessible surface (SAS) around the
molecule and generating its triangulated representation by
the SMART algorithm (30). In the third step, the ray-tracing
process is executed inside the cavity bound by the SAS which
encompasses the molecule. The ray of light, emitted initially
from a randomly chosen point on the interior lining of the
molecular compartment, travels inside the cavity and as it
strikes the opposite face, is reflected and propagated in the
direction determined by the law of optical reflection. For each
reflection point, the value of the truncated Coulomb potential
or the molecular electrostatic potential (MEP), and the
lengths of the incident and reflected ray segments are
recorded. The procedure terminates after 100,000 reflections.
According to our previous work (31), this number was found
sufficient for the trajectory of the ray to fully explore the
entire volume of a typical drug-like molecule. The output is
then used to construct two compact one- and two-dimensional
histograms (‘signatures’) that encode molecular shape and
polarity respectively (Fig. 1). In particular, all recorded ray
segments are binned by their length into a one-dimensional
histogram with the predefined bin width of 0.5 Å (Fig. 1b). In
addition, a second histogram is also constructed, for the
values of MEP (with a step of 0.05e/Å) and the associated
total length of the two path segments joined by the reflection
point, resulting in a two-dimensional histogram (Fig. 1c).
Both the histograms are normalized. Once generated, these
histogram based fingerprints (‘signatures’) can be used to
compare any two small molecules. Shape similarity between a
pair of molecules is assessed by comparing their 1D signature
(Fig. 1b), whereas matching the 2D signatures of the two
structures compares their overall molecular shapes and MEP
(Fig. 1c). This process is fast and efficient, and it eliminates
tedious and subjective atom-based alignment of the molecules.

The Shape Signatures method benefits from its ability to
capture the true three-dimensional structure of the molecules.
The method has already proven successful for a number of
drug discovery programs when used for database similarity
searching (15–19,31). Recently, the Shape Signatures method
has been extended into the domain of predictive modeling. In
particular, it was demonstrated that Shape Signatures can be
employed to generate ensembles of three-dimensional mo-
lecular descriptors useful for classifying compounds with
respect to their experimentally tested activity at the 5-HT2B

receptor and the hERG channel (31). It was found that the
Shape Signatures based models performed as well as or even
better than more traditional classification models with 2D
molecular descriptors. The fact that one- and two-dimensional
Shape Signatures collectively account for the molecular
characteristics of shape and polarity that are key for
successful transport across the blood–brain barrier, invites

Table I. Datasets Used for this Study are Listed by the Author’s
Name along with the Total Number of Compounds

Dataset
Number of
compounds

Number
of BBB+

Number
of BBB− Reference

Xu-training 78 41 37 (21)
Kitchen-100 100 45 55 (25)
Kitchen-181 181 91 90 (25)
Garg 159 83 76 (20)
KC291 269 155 114 (22)
Liu 61 26 35 (24)
Li 376 250 126 (23)
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examination of this methodology as a potential predictor of
the blood–brain barrier permeation capability of virtually
any drug-like chemical.

Shape Signatures Molecular Descriptors

Following our previous work (31), for each compound in
this study, the heights of the bins of the associated 1D and 2D
Shape Signatures histograms constituted two sets of distinct
molecular descriptors related to this particular structure: the
first based exclusively on molecular shape and the second
reflecting both molecular shape and polarity. Despite being
represented as 1D and 2D histograms, these Shape Signatures
fingerprints are inherently three-dimensional molecular
descriptors since they encode the 3D conformation and
polarity of the molecule.

Support Vector Machine (SVM) Classification Procedure

In recent years, SVM has become a method of choice
among different supervised classification methods for a broad
variety of binary classification problems. This technique was
built on the structural risk minimization principle (32,33), and
is now widely recognized for its ability to solve highly non-
trivial classification problems (23,31,34–37). The central idea
of the method is to project the original descriptor vectors to a
higher dimensional feature space where a clearer division
between the two classes of data becomes feasible. In such a
high-dimensional feature space, a linear SVM routine is
applied next to optimally position the separating hyperplane
between the instances from the two classes. Minimization of
the expected generalization error for the test datasets is
achieved by finding a separating hyperplane with the maximal
margin. In this work, we used a well tested and freely
available program LIBSVM (C-SVM) (38). We utilized the
radial basis function kernel, whose parameter γ and the
penalty term C was determined in each case via a simple grid
search procedure by the 10-fold cross validation.

For every dataset, the associated library of Shape
Signatures was generated and prepared for the classification
analysis. Several SVM classification models trained on the data
from the two BBB databases were applied to predict the
blood–brain penetration capabilities of the molecules in the
SCUT database. Prior to performing this, the SCUT derived
dataset was screened for redundancy against the other two
training sets (the full lists of compounds for each data class are
available in the Supplementary Table II).

Data Analysis

The prediction power of both the regression model and
each SVM model was evaluated by computing the following
statistical indicators. The average number of correctly pre-
dicted BBB+ compounds in the test set BBBþh i ¼ BBBþtrue=h
BBBþtoti, the average number of correctly predicted BBB−
molecules in the test set BBB�h i ¼ BBB�true=BBB�toth i, and
the total prediction accuracy Qh i ¼ BBBþtrue þ BBB�trueð Þ=h
BBBþtot þ BBB�totð Þi . These measures are equivalent to the
standard statistical indicators: sensitivity (SE), specificity (SP)
and overall accuracy (Q), respectively (34). In addition,
following our previous study (31) and the work of Ung et al.

(39), we report the values of Matthew’s correlation coefficient
(40)

C ¼ BBBþtrue � BBB�true � BBBþfal � BBB�fal
� �

BBBþtotð Þ BBBþtrue þ BBBþfal
� �

BBB�totð Þ BBB�true þ BBB�fal
� �� �1=2

ð1Þ

The Matthew’s correlation coefficient is another measure
of the overall prediction performance. For a perfect classifi-
cation, when BBB+fal and BBB−fal are both zero, the value of
C=1, while for a random performance, C would be close to
zero since in this case, BBB+true ≈ BBB+fal and BBB−true ≈
BBB−fal. A negative value of C would suggest worse than
random performance.

RESULTS

Development of Generalized BBB Regression Models

The linear regression BBB model developed with eight
interpretable molecular descriptors, calculated with MOE, is
described below:

logBB predð Þ ¼ 0:3408 � logP� 0:0192 � TPSAþ 0:2503

� a nN þ 0:1467 � a nOþ 0:1069 � log S
� 0:0011 �mass� 0:0001 � volume

� 0:0602 � #rot:bonds ð2Þ

Where: a_nN is number of nitrogen atoms, a_nO is
number of oxygen atoms, TPSA is topological polar surface
area, logS is solubility and logP is a water / octanol partition
coefficient and measure of hydrophobicity, and # rot. bonds is
the number of rotatable bonds.

The model was built using the data for 78 molecules from
the training set of Hou and Xu (21), with an r2=0.70 (Fig. 2).
The model was further validated using the dataset from

Fig. 2. Correlation of predicted logBB values (x-axis) versus the
experimental logBB values (y-axis) for compounds from Xu-training
set. The regression equation model resulted in an r2=0.70.
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Kitchen et al. (25) on a set of 100 molecules with an r2=0.65.
These results are comparable to the respective test set
correlations in earlier publications (r=0.79 [r2=0.62] (21)
and r~0.7 [r2=0.49] (25)). The generalized regression model
described here was also used to predict the BBB permeation
of other published molecules (Table II). The overall
prediction accuracy ranged from 59% to 93% irrespective of
the number of compounds in the set. The values of the
Matthews correlation coefficient were greater than zero (C
value ranged between 0.340 and 0.866), showing that the
model performed very well and better than random in all
cases. Subsequent classification using the generalized model
on the BBB+ and BBB− datasets was also performed. The
results from this classification showed that the model
performed well for the BBB− datasets with a classification
rate between 75% and 96%. However, the results from the
BBB+ sets were moderate, between 45% and 92%.

In order to further understand these results, we per-
formed a Principal Component Analysis (PCA) of the data-
sets based on the eight molecular descriptors, with reference
to the molecules from the Xu training set. PCA is a useful
tool in exploratory data analysis. Principal components (PC)

are linear combinations of the original variables constructed
and organized in such a way so that the first principal
component PC1 attempts to maximally explain the variance
in the data. Geometrically, it defines the direction in which
the data is maximally spread. The next PC2 is orthogonal to
PC1, and tries to maximally explain the residual variance not
explained by PC1. PC3, which is now orthogonal to both PC1
and PC2, in turn is set to maximally explain the variance not
explained by the first two principal components, and so forth.
Based on the PCA comparison, it is clear that there is a
partial overlap of the chemical space covered by the Xu set
used to initially derive the regression model (Fig. 3b). The
PCA analysis shows a number of the BBB+ molecules outside
the area covered by the Xu set, whereas the BBB− molecules
seem to be generally closer to these initial training set
molecules (Fig. 3b). Although this PCA analysis is rather
qualitative, it provides confirmation that predictions outside
the chemical space of a model could be unreliable. The poor
performance of some of the BBB+ molecules could also be
due to the molecules’ larger size and higher flexibility that
might well influence the logBB values in the regression
model.

Table II. Prediction of BBB+ and BBB− Compounds Based on the Eight Molecular Descriptors Implemented in the Generalized Regression
Model

Test set
Total no. of
compounds

Total
prediction No. of BBB+

No. of BBB+
predicted No. of BBB−

No. of BBB−
predicted

C (Matthews
correlation coefficient)

Xu-training 78 69 (88%) 41 34 (83%) 37 35 (95%) 0.776
Kitchen-100 100 90 (90%) 45 37 (82%) 55 53 (96%) 0.802
Kitchen-181 181 120 (66%) 91 43 (47%) 90 77 (86%) 0.355
KC291 269 190 (71%) 155 104 (67%) 114 86 (75%) 0.420
Liu 61 57 (93%) 26 24 (92%) 35 33 (94%) 0.866
Li 376 225 (60%) 250 113 (45%) 126 112 (89%) 0.340
Combined 351 250 (71%) 186 122 (66%) 165 128 (78%) 0.433

The prediction accuracy of each group is reported in parenthesis

Fig. 3. a Results of the PCA analysis on the Xu–Combined dataset conducted in the space of eight molecular descriptors computed with MOE
(PC1=54%, PC2=26%, PC3=10%). b Results of the PCA analysis performed on the Xu–Li dataset conducted in the space of eight molecular
descriptors computed with MOE (PC1=52%, PC2=27%, PC3=11%). Black circles: molecules from Xu’s dataset. Red circles: BBB+
compounds from Combined (a) and Li’s (b) datasets. Blue circles: BBB− compounds from Combined (a) and Li’s (b) datasets.
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Generalized BBB Regression Models Used to Predict
the SCUT Database

The performance of the generalized regression model
was further assessed by predicting the BBB permeability of
molecules from the SCUT database of FDA approved drugs.
After removing those molecules in the model training set, the
compounds were first classified based on their functionality
(knowledge based method) as possible BBB+ and BBB−
categories (for example an antidepressant would be catego-
rized as BBB+ while an antihypertensive drug would be
classified as BBB−). Similarly, for the rule based classifica-
tion, using the five simple rules namely, (a) if ∑(N + O)
atoms≤5, (b) ClogP−(N+O)>0, (c) PSA<60–90 Ǻ2, (d)
mass≤450 and (e) 1≤ logD≤3 (8,9) the SCUT database of
compounds were classified into BBB+ and BBB− molecules.
Only molecules that strictly obeyed all the five rules were
categorized as BBB+ (74 molecules) and the remaining
compounds in the SCUT database were classified as BBB−
(315 molecules). Of the 389 total molecules, the knowledge
based scheme found 95 compounds to be BBB+ and the rest
of the compounds (293) to be BBB−. Further, the generalized
regression model was applied to classify the SCUT database
of compounds (Supplemental Table II). The logBB values were
predicted using the generalized regression model and a cutoff
of logBB=0 was used to classify the compounds into BBB+ and
BBB− categories. The model performed with an overall accuracy
of 77% and a correct prediction rate of 88% for BBB− and 45%
for BBB+ molecules, when compared to the knowledge based
classification of the molecules based on the known therapeutic
indications. However, these results could be severely biased due
to the nature of the compound classification.

SVM Classification Models for BBB

The datasets used to generate a number of the SVM
models presented in this study are detailed in Table I. In the
process of constructing the Shape Signatures histograms for
each molecule from the aforementioned datasets, it was
observed that 2D Shape Signatures normally included several
hundred non-zero bins/descriptors and the resulting data
matrix usually had a high degree of redundancy. Therefore,
based on our previous experience (31), before building the
SVM models we reduced the dimensionality of the original
data matrices using the unsupervised forward selection (UFS)
method of Livingstone and co-workers (41). The UFS routine

was designed specifically to eliminate redundancy and
decrease multicollinearity of the input data, and has been
demonstrated to be useful for a number of QSAR (41) and
SVM classification (41) studies. In each case, the output data
matrix contained less than 100 data columns. For each dataset
in Table III, two types of the SVM models were built and
validated. The first set included models resulting from a
straightforward 10-fold cross validation conducted on the
entire datasets. The prediction accuracy of these models were
assessed first by calculating the overall accuracy rates Qcross,
which show the average fractions of correctly predicted
molecules (combined BBB+ and BBB−) from the test sets.
Second, the classification models produced in a series of
leave-20%-out SVM runs were assessed as follows. For each
Shape Signatures database, approximately 20% of the com-
pounds from the database were randomly selected and
assigned to the hold-out test set while the remainder of the
data (~80%) constituted the training set. The selection was
carried out to approximately preserve the correct proportion
of BBB+ and BBB− chemicals in both sets. Each SVM
classification model was then generated with the training set
and applied to predict class attributes of the compounds in
the test set. Next, a set of statistical indicators of prediction
accuracy were computed and stored. This procedure was
repeated 100 times, each time with a different composition of
the test and training sets. For each model, the reported final
statistical measures were averaged over the number of
repetitions. The predictive power of each SVM model in this
group was evaluated by computing the statistical indicators
such as the average Q value and the Matthews correlation
coefficient C (Table III). It was found that both models
performed similarly in terms of 10-fold cross validation
prediction accuracy 80–83%, leave-20%-out testing predic-
tion accuracy 80–82% and C values 0.53–0.63.

For comparison, we have also used the same eight MOE
descriptors derived in the generalized regression model
(described above), to generate SVM models with the Li and
combined datasets. These generally performed comparably
well although with lower Matthew’s correlations than ob-
served with Shape Signatures descriptors (Table III). Perhaps
equally interesting is the comparison between the regression
model (Table II) and the SVM model (Table III) using the
same MOE descriptors. This analysis reveals that the SVM
models produce a dramatic improvement in the predictions
for the BBB+, BBB− and Matthews correlation, especially for
the combined dataset.

Table III. SVM Classification of BBB+ and BBB− Compounds from Combined (351 Molecules) and Li (378 Molecules) Datasets

Dataset Molecular descriptors 10-fold cross validationb (%)

Leave-20%-out testingc

〈BBB+〉 (%) 〈BBB−〉 (%) 〈Q〉 (%) C

Combined 2D (shape + charges) Shape Signatures 83 84 79 82 0.635
Combined MOEa 80 80 79 80 0.595
Li 2D (shape + charges) Shape Signatures 80 89 62 80 0.533
Li MOEa 80 89 51 76 0.435

aEight molecular descriptors computed with MOE also used in the regression equation: b_rotN, Weight, a_nN, a_nO, logs, TPSA, Vol and
logP (o/w)

bThis column lists prediction accuracies Q estimated from 10-fold cross validations performed on the entire dataset
cThe tabulated values of 〈BBB+〉, 〈BBB−〉, 〈Q〉 and C were averaged over the results of 100 different hold-out test set experiments
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Comparison between SVM Classification Results Based
on 1D and 2D Shape Signatures

Based on the Qcross values we have demonstrated that
the classification models based on 2D Shape Signatures
descriptors (Qcross 80–83%) which encode for molecular
shape and polarity, performed slightly better than those
constructed using 1D Shape Signatures descriptors (Qcross

73–79%) which account exclusively for molecular size and
shape (Table IV). This would also be expected based on past
studies of molecular requirements for BBB penetration. Due
to the unique physicochemical structure of the blood–brain
membrane, for a molecule to penetrate the BBB the right
balance between the molecular shape and distribution of
atomic charges is required. Hence, the models that take into
account both of these properties are expected to be generally
more accurate.

Classification of the SCUT Database Using Shape Signature
Based SVM Models

Finally, we attempted to classify molecules from the
reduced SCUT database (27,28) (389 structures) using the

Shape Signatures SVM models described in the previous
sections (Supplemental Table II). As was noted before, we
ensured this dataset did not contain structures present in
either of the training sets and represents an application of the
models to a group of molecules of medical importance. It
should be considered that the experimental logBB values for
many of these structures have not been documented so far in
the literature, therefore the reported predictions for these
compounds using the generalized regression model, the rule
based model and SVM classifications model is the first effort
to classify the SCUT database compounds as BBB+ or BBB−
chemicals. Using our knowledge of the therapeutic targets
and reported side effects of these molecules, we were able to
ascertain the likely BBB+ or BBB− nature of the molecules.
But as mentioned above, it is certainly possible that BBB−
may be misclassified. Prior to using the classification models
we assessed the chemical space covered by the structures
from the training and test (SCUT) sets to evaluate whether
they overlapped. As described above, we subjected the
utilized molecular descriptors from both sets to PCA using
the 2D Shape Signatures descriptors for the two mixed
datasets, namely Combined-SCUT (Fig. 4a) and Li-SCUT
(Fig. 4b). The PCA analysis shows that ~80% of the variance
is explained in the space of the first three principal
components and there is a significant overlap between the
regions of chemical space occupied by the molecules from
these three datasets using these descriptors. When analyzing
the SVM results for the SCUT database we also need to
consider that for the Combined and Li datasets the dividing
boundaries between BBB+ and BBB− were set differently.
For the Combined dataset (logBB=0) and for the Li dataset
(logBB=−1). Based on the SVM models, the 10-fold cross
validation models performed better in predicting the BBB+
category of compounds using either the combined or the Li
datasets for training. However, for the prediction of the BBB−
category, the leave-20%-out models performed marginally
better than the 10-fold cross validation for both training sets.

Table IV. Results of SVM Classifications Based on 1D (Shape Only)
and 2D (Shape + Charges) Shape Signatures Molecular Descriptors

Dataset

Qcross
a (%)

1D Shape Signatures
(shape only)

2D Shape Signatures
(shape + charges)

Combined (continuous) 77 83
Li (discrete) 73 80

a For each dataset, Qcross was estimated from 10-fold cross validations
performed on the entire dataset

Fig. 4. Results of the PCA analysis conducted in the space of 2D Shape Signatures (shape + charges) molecular descriptors on the Combined–
SCUT and Li–SCUT datasets. a PC1 vs PC2 for the Combined SCUT dataset (PC1=55%, PC2=12%, PC3=9%). Black circles: 351 compounds
from Combined dataset. Red circles: 95 BBB+ compounds from SCUT. Blue circles: 294 BBB− compounds from SCUT. b PC1 vs PC2 for the
Li-SCUT dataset (PC1=63%, PC2=11%, PC3=8%). Black circles: 378 compounds from Li dataset. Red circles: 95 BBB+ compounds from
SCUT. Blue circles: 294 BBB− compounds from SCUT.
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Consensus Prediction for SCUT Database

Finally, a consensus ‘model’ was built based on the six
different models (described above) for prediction of BBB
permeation of the SCUT database. The results from the
consensus model are described in Table V. In order to arrive
at a consensus, all the models were assessed with equal weight
and a decision was made based on a majority vote (4/6)
(Supplemental Table II). Based on the consensus model, 53 of
the 95 compounds (56%) were correctly categorized as BBB+
and 204 of 295 compounds (69%) were correctly categorized as
BBB−. In all, 257 out of 389 (66%) compounds were correctly
classified for BBB permeation in comparison with the knowledge
based classification scheme.

DISCUSSION

The use of regression based BBB models was first
proposed by Van de Waterbeemd and Kansy (42) followed
by many others with varying molecular descriptors (Supple-
mental Table I). However, all these models perform well with
their respective small training and test datasets and generally
fail (or are less predictive) when tested against other more
diverse datasets. This could be due to the fact that the
compounds belong to a different region of chemical space and
the models have an inherent descriptor independent value
that is tuned to span only the chemical space of the original
test sets (8). In order to overcome the inherent disadvantages
of regression models, we first propose a simple generalized
regression model (see Eq. (2)) that has been built based only
on the values of eight standard molecular descriptors with no
added constants.

The choice of the molecular descriptors was based on a
few simple rules derived from the physiological features
governing cellular permeability. These are:

(a) Inclusion of hydropathic descriptors that span both
the hydrophilic and hydrophobic nature of bilayers
(logP, TPSA, a_nN and a_nO in Eq. (2)) (43,44).

(b) Inclusion of logS based on the hypothesis that water
soluble compounds have a high probability of
passing across the BBB (45,46).

(c) Molecular weight and size of the compound should
be a rate limiting factor for BBB permeation (47).

(d) A high level of flexibility (large number of rotatable
bonds) of the compound should be a deterrent for
BBB permeation (44).

The influence of each of the above molecular descriptors
has been validated in previous regression models
(22,24,25,43,48–50). However, we have assessed the total
effect of all these descriptors in our generalized regression
model. When used to predict an external set of 100 molecules
the correlation was very comparable to those described for
other more sophisticated models (10). Moreover, extensive
testing of the equation with different datasets (Table II)
suggested that the prediction accuracy would indicate the
regression equation is generalizable. However this model
performed less well with BBB+ molecules which may be due
to the chemical space these represent (with the eight
descriptors used) in the test sets compared to the training
set. These results were in sharp contrast to the general
prediction trend for BBB− molecules (including the SVM
based models reported here), since they tend to be biased
towards BBB+ molecules. This generalized model was further
applied to classify compounds from an independent dataset of
FDA approved drugs (SCUT database). The regression
model performed better than the rule based model for both
the BBB+ and BBB− categories (Table V), although again
the prediction rate was better for the BBB− category.
Overall, the regression model could correctly predict 77%
of the compounds from the SCUT database for BBB
permeation. The predictions with the regression model were
also slightly better than using the simple rule base model (73%
correct overall), which also only predicted 34% of BBB+
molecules. This would suggest the additional value of using
regression or SVM methods which perform far better at
predicting this class.

In order to understand the effect of molecular shape and
size in more detail we further classified the datasets using a
more sophisticated statistical method namely SVM, using the
shape signature based descriptors. We found that 2D Shape
signature descriptors slightly outperformed 1D Shape descrip-
tors with the SVM algorithm. Additionally Shape Signatures
also performed slightly better than SVM models developed
with the MOE descriptors used in the regression model (as
we have shown previously with other datasets (31)). SVM
models with these eight descriptors were also superior to the
regression models at classification of the two datasets. Using
either 10-fold cross validation or leave-20%-out testing the
Shape Signatures SVM models had greater than 80%
prediction accuracies. Li et al. (23) reported a number of
classification studies using a range of classifiers from logistic
regression to SVM. Two types of SVM procedures were

Table V. Predictions of BBB Permeation for Molecules from the SCUT Database of Known Drugs with BBB Permeation Classified Based on
Known Therapeutic Use

Knowledge based
model

Regression
model

Rule-based
model

SVM models

10-fold CV
(Combined
dataset)

Leave-20%-out
(Combined
dataset)

10-fold CV
(Li dataset)

Leave-20%-out
(Li dataset)

Consensus
model

BBB+ (95 cmpds) 39/95 (41%) 32/95 (34%) 57/95 (60%) 51/95 (54%) 80/95 (84%) 76/95 (80%) 53/95 (56%)
BBB− (294 cmpds) 262/294 (89%) 253/294 (86%) 193/294 (67%) 204/294 (69%) 133/294 (45%) 149/294 (51%) 204/294 (69%)
Total (389 cmpds) 301/389 (77%) 285/389 (73%) 250/389 (64%) 255/389 (66%) 213/389 (55%) 225/389 (58%) 257/389 (66%)
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presented which differ in the way the set of molecular 1D to
3D molecular descriptors were selected from the original pool
of 199 (41). The first group of SVM models used all 199
descriptors while the second set utilized the advanced
recursive feature elimination (RFE) program. This procedure
selects the most informative subset of molecular descriptors.
Upon comparing our results (Table III) with the predictions
of Li et al., we note the following. Our SVM models based on
2D Shape Signatures molecular descriptors (shape + charges)
perform at the same level as their SVM classifications when
used without the RFE feature selection (SE=89.9%, SP=
64.3%, Q=79.1% and C=0.52). This observation certainly
validates the applicability of the Shape Signatures derived
molecular descriptors for predicting BBB permeation capa-
bility. However, according to Li et al. the best performing
SVM model is the RFE–SVM approach which provided
slightly better results on average SE=88.6%, SP=75.0%, Q=
83.7% and C=0.64 than the less advanced UFS data
reduction scheme which we have used.

Both the generalized regression model and the Shape
Signatures SVM models were used to classify the FDA
approved small molecule drugs from the SCUT database.
The shape signature descriptor space for this set of molecules
was compared to the SVM model training set and found to
overlap closely (Fig. 4), providing some confidence in the
applicability or domain of this model to this particular test set.
The performance of the rule based and the regression models
for the BBB+ category was low as opposed to the BBB−
category, which had an average success rate of ~88%
(Table V). The results from the SVM prediction was opposite
to the regression and rule based methods, with the predic-
tions in the BBB+ category faring better than the BBB−
category. If we were only interested in the BBB+ compound
prediction accuracy (which we have the most confidence in as
these molecules are known to be centrally active based on
their therapeutic use, enabling us to create the knowledge
based model), the 10-fold CV (Li dataset) model performs
very well with 84% correct predictions for the 95 molecules.

A consensus model was built for prediction of the SCUT
database classifications. The results from the equally weight-
ed consensus model show that 56% of the BBB+ and 69% of
the BBB− category of compounds could be predicted
correctly. These results essentially average the predictions
across the models and do not improve upon the individual
models as has been noted before (25), however we could
envisage the use of more sophisticated scoring or weighting
schemes (or the use of the leave-20%-out Li dataset SVM
model and the regression model alone) to predict BBB+ and
BBB−, respectively.

An objective of our research was to examine the quality
of a novel set of molecular descriptors derived from
molecular Shape Signatures (15–19). These descriptors are
inherently three-dimensional and a relatively new addition to
the other 2D/3D descriptor collections used in predictive
QSAR modeling (51,52). We have now extended the Shape
Signatures methodology to molecular classifiers for a physi-
cochemical property, namely BBB penetration. Given the
simplicity and physical transparency of the Shape Signatures
representation, our results described herein are encouraging
for the applicability of this method. The Shape Signatures
method is capable of encoding of these main features in a

compact and practical form, which underlies the versatility of
its usage. Because the procedure does not require either a
direct 3D molecular alignment or grid generation, the
algorithm is also relatively fast and efficient. Models based
on Shape Signatures histograms can accommodate various
chemical compositions. Due to the universal character of the
Shape Signatures histograms, once generated they can be
used for a variety of tasks which require molecular recogni-
tion and at the molecular level no model refitting is necessary
in going from one problem to another.

In summary, the present study suggests new approaches
for assigning drugs to BBB classifications using (either in
combination or alone) a generalized regression equation with
MOE descriptors or SVM models using the novel Shape
Signatures descriptors. These models may be valuable for
providing predictions of BBB permeability that may over-
come some of the limitations of previous models in terms of
their generalizability and the chemical space covered.
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